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Mathematics is a language. It has its own vocabulary, symbols, syntax and grammar. It is a 
powerful way of communicating ideas about the world. Increasingly, students have been 
encouraged to talk about their mathematics, but the potential for using linguistic features of 
that talk as indicators of student understanding is only beginning to be explored. This paper 
presents some evidence that the style of students’ responses to questions about groups of 
similar algebraic items can indicate the level of their understanding. 

Students in mathematics classrooms are encouraged to communicate their 
mathematical understandings in a variety of ways – by writing about their mathematics, 
drawing pictures or diagrams, talking with others, and explaining their ideas and thoughts. 
As students work together in groups or engage in discussions with the class, with the 
teacher or with a small group of peers, their mathematical talk has often helped teachers to 
make judgements about an individual’s understanding. A student’s use of appropriately 
technical mathematical vocabulary is one characteristic of student talk that can be explicitly 
identified by a teacher. More subtle characteristics of syntax and grammar may also 
influence a teacher’s judgement, although these may not be made explicit.  

The aim of this study is to identify characteristics of students’ verbal responses which 
may then be used as indicators of their understandings of basic algebraic concepts and 
procedures. One such characteristic is the style of response students may give when asked 
to tell what goes on in their heads when they are asked to comment on sets of similar 
algebraic questions.  

Background: Mathematics as a Language 

Mathematics begins and proceeds in language, it advances and stumbles because of language, and its 
outcomes are often assessed in language. (Durkin, 1991) 

Mathematics is commonly perceived to be communicated through a written, lexically 
dense language. There is, however, a recent acceptance that students need to verbalise their 
mathematical ideas in order to describe and test relationships between mathematical 
identities, and hence generalise from particular instances (Dawe, 1995). 

Research into the spoken language of the mathematics classroom has largely focussed 
on social and cultural issues influencing students’ language use and ability to engage 
successfully in mathematics classes. It has also focussed on the ways in which teachers and 
students interact to create effective learning environments (Ellerton & Clements, 1996; 
Stephens, Waywood, Clarke & Izard,1993)  

Understanding the language of mathematics does not involve simply the acquisition 
and use of the appropriate vocabulary, although this does seem to be the focus of some 
curriculum documents such as the CSF in Victoria (MacGregor, 2002) and the NSW 
Mathematics Syllabus 7 –10 (Board of Studies NSW, 2002). Students often struggle with 
the language because much mathematical language uses natural language, borrows words 
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from natural language or ascribes particular meaning to words commonly used and has 
syntax not unlike, yet different in many crucial respects. These mathematical language 
patterns and the extent to which they affect a student’s mathematical understanding have 
received little attention (MacGregor, 2002). There has been demonstrated a relationship 
between literacy levels and mathematics achievement. MacGregor and Price (1999) 
concluded that students who demonstrate an awareness of the structures of their natural 
language are more successful in dealing with algebraic statements and with translating 
word problems into useful mathematical forms. 

How students are thinking is often more effectively revealed through their talk, if 
teachers realise that they need to listen to students not only to correct them, or to assess 
what they say, but also for how they convey their thoughts (Dawe, 1995). When recording 
then analysing students’ talk about algebraic expressions, Smith and Phillips (2000) were 
cautious about the students’ reasoning. Statements such as ‘3x and 3x is 6x squared’ they 
felt, could indicate either poor understanding or sloppy expression. MacGregor and Stacey 
found that secondary students who used such informal, unclear, or immature ways of 
describing number relationships were less likely to relate those relationships to a 
mathematical operation (in MacGregor, 2002). Complex sentence structures, use of the 
logico-grammatical connectives (Dawe, 1995) such as ‘so’, ‘if’, ‘because’ indicate deep 
understanding of mathematical concepts. This understanding can be fostered by teachers 
providing contexts that challenge students to make mathematical arguments that in turn 
develop their thinking and their ways of expressing those ideas (Douek, 2002). 

Listening to linguistic characteristics in student talk may also give an objective basis 
for judgements about students’ attitude to mathematics. Bills (1999) examined the modality 
of students’ responses in a one-to-one interview for clues to their response to classroom 
culture. Use of words such as ‘may’, ‘might’, ‘just’ modify the authority or confidence of a 
response. Rowland (2000) also examined students’ use of hedges and teachers’ use of 
shields in classroom conversations. When students use hedges, they convey a sense that 
they lack confidence in what they say, when teachers use shields, they provide a safety net 
for students to avoid giving a direct answer and so appearing to fail. 

Analysis of students’ descriptions of their calculations procedures has lead Bills and 
Gray (2001) to conclude that the style in the procedure was described may indicate the 
student’s level of understanding. 

Using data from interviews with children aged between 6 and 9 years of age Bills and 
Gray (2001) and Bills ( 2002) found that the language children use may point to individual 
differences in their modes of thought. The children were asked to describe ‘what went on 
in their heads’ as they performed various mental calculations. Their responses were 
matched with their success in correctly performing the calculations, and with the difficulty 
of the calculations. The results suggested that characteristics of the language used by pupils 
who are successful in mental calculation include the use of the pronoun ‘you’ rather than 
‘I’, as well as non-particular expressions of generality in the simple present tense and as the 
use of logical, deductive connectives such as ‘if’, ‘so’ and ‘because’.  

The purpose of the study, part of which is reported in this paper, is to ascertain if such 
linguistic features may also be used as indicators of students’ understanding of algebraic 
processes. In particular, this paper reports on the analysis of types of responses, whether 
they are focussed on particular items or are given in general terms. 
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Outline of the Study 

Students in years eight and nine from three secondary schools in regional NSW 
participated. The study consisted of two parts. In the first, students were asked to complete 
a survey (test) of 40 algebra items, administered by their class teacher in class time. For the 
second part, thirty-three students who represented a range of success on the survey items, 
who were willing to be interviewed and who had care-giver permission were interviewed. 
The interviews were audio-taped and transcribed. The survey items were drawn from Stage 
4 examples in the NSW 7-10 Syllabus (2002) and from Kuchemann’s study (1981). They 
included the manipulation of algebraic expressions and the solution of simple equations. 
The responses were coded as correct (2), incorrect (1) and then analysed using Rasch 
Modelling. The interviews consisted of nine sets of questions, each set consisting of up to 
eight items drawn from the survey and grouped according to structural characteristics 
(Table 1). 

Table 1 
 Items in Sets Presented to Students During Interviews (DD: Average Degree of Difficulty) 
 

Set1: 
3m+ 8+ 2m− 5

5p − p+ 1

2ab+ 3b + ab

5a − 2b + 3a+ 3b  
DD: -0.473 

Set 2: 
4 × 5b

2ab× a

4r × 5t × 3 
DD: -0.13 

Set 3: 
2(x + 5)

2(x + 4)+ 3(x −1)

2(x + 5) +8  
DD: 1.013 

Set 4a: 
a

5
+ a

10
3p

4
−

p

8  
DD: 1.24 

Set 4b: 
4ab
4b
2

a
×

3

b
2

a2
×

5a

4  
DD: 1.19 

Set 5: 
x + 5 = 7

2t − 23= 49

5a − 4 = 2a + 8

x + (x + 2)= (x −1) +8

4(p+ 3) = 32

4y = 20

10y = 5

ax = 5  
DD: 1.11 

Set 6: 
x

4
=12

x + 3

2
= 7

63

x
=180

 
DD: 1.49 

Set 7: 
(6xy)2

(x + y)2

(a − b) + b

8p− 2(p+ 5)  
DD: 2.99 

 

 
 
 

 
The first set consisted of expressions to be simplified by adding or subtracting like 

terms, the third set of expressions with brackets and the fifth and sixth sets were equations 
to be solved. The items were written and the students were asked to act on the items 
mentally where possible. Students were shown an entire set of written algebraic items and 
asked: ‘What goes on in your head when you see expressions/equations like these?’  The 
intention here was for students to read through all items in the set and decide on some 
generalisation about the members of that set. The eighth set consisted of items from 
Kuchemann’s (1981) work used to determine students’ understanding of algebra syntax 
and symbolism. The ninth set was of questions designed to determine some background 
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linguistic structures of the students as they answered questions that were non-algebraic or 
non-mathematical. These data are not included in the present analysis. Only the students’ 
initial responses to the question have been considered.  

The interview transcripts were analysed for several linguistic features of these initial 
responses, including whether the responses were particular or general. Particular responses 
are those where the students have dealt with individual items in each set without 
recognising any structural similarities between all the members of the set. These responses 
were identified in four ways: (1) One item only where the student has given a description 
of the process or an answer to a single item in the set; (2) one item has been responded to, 
but the student has offered some sort of explanation [explan]; (3) several items have been 
responded to, the student either giving a series of answers or a description of the algebraic 
process for each individual item; and (4) the student has offered some explanation for the 
answer or the process for each item in the set. 

General responses are those where the student has seen some mathematical aspects that 
are shared by all members of the set. These responses are those where (1) the student 
quotes an all-encompassing rule; (2) the student quotes a rule and supports it by one or 
more examples from the set; and (3) the student gives a general procedural rule and 
supports it by mathematical reasons which need not rely on the particular examples 
presented to them [explain].  

The resulting data were analysed in two ways. Firstly, in order to determine if the type 
of response changed as the degree of difficulty of the questions changed, the number of 
particular and general responses to each set was compared with the order of difficulty of 
each set. This degree of difficulty was established by averaging the threshold values, from 
the Rasch scaling, for a correct response for each of the items in the set. Secondly, the 
numbers of particular and general responses made by each of the students was compared to 
their success on the survey items in order to discover if students with differing levels of 
success gave predominantly different types of responses. 

Results 

Response Type Compared to the Degree of Difficulty of Items 

Table 2 sets out the numbers of particular and general responses for each set of algebra 
items, according to the degree of difficulty of each set. 

Set 4 was analysed in two parts, the first (4a) consisted of two expressions in which a 
pair of algebraic fractions was to be added or subtracted, the second (4b) required 
simplification of algebraic fractions to be multiplied. Students tended to deal with the first 
and then with the second without making any generalisations about the set as a whole. 

It should be noted that the rules and generalisations did not have to be mathematically 
correct or appropriate for this part of the analysis. In one or two cases, students who did not 
score well on the survey items, and who were in the lower graded classes, quoted rules that 
were not mathematically useful. For example, in response to being shown set 4a, one 
student said: 

I think of adding those bottom numbers first, then adding the top… 

Ninety-nine responses not included in the table were those considered to be non-
mathematical. Responses such as ‘I don’t like fractions’ or ‘Run away’, those which gave a 
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general description of the members of each set such as ‘They’ve all got brackets’ or which 
simply repeated the question were included in this group. 

Table 2 
Numbers of Student Responses to Each Set of Items, Arranged by Degree of Difficulty 

Responses to particular items in each set. General responses to sets of items 
Set 

Number 

Degree 
of 

difficulty 1 item 
only 

1 item + 
explan 

2 or more 
in set 

2 or 
more + 
explan 

Total 
particular 
responses 

Rule 
given 

Rule + 
example 

Explan 
Total 

general 
responses 

7 2.99 11 0 8 3 22 4 3 0 7 

6 1.49 12 4 4 5 25 0 0 0 0 

4a 1.24 7 1 1 1 10 3 5 1 9 

4b 1.193 12 4 4 5 25 2 1 0 3 

5 1.11 7 0 6 4 17 1 5 2 8 

3 1.013 8 0 3 0 11 7 10 3 20 

2 -0.13 5 2 7 1 17 4 6 2 12 

1 -0.473 3 0 1 3 7 12 9 0 21 

Totals   65 11 34 22 134 33 39 8 80 

 
In all, 214 responses from 33 students were treated as being mathematical. 25.6% of all 

responses were considered to be general and 42.8% particular. Only 10.5% of all responses 
were explanatory.  

Two sets, 1 and 2, were rated an average degree of difficulty less than 0, and 25.9% of 
all the responses were in this group. However, 40.7% of those responses were general, 
whilst 20.3% of the remaining responses on items with an average degree of difficulty 
greater than zero were general. 

 Response Type and Success of Students 

The number of initial mathematical responses from each student varied, particularly as 
the weaker students often gave non-mathematical responses, even when prompted, or 
declined to respond to harder items such as those in sets 4a and 7. Consequently, the 
overall number of initial general responses by each student on each set was compared with 
the overall number of initial responses recorded by that student. 

60% of the responses from students whose survey scores were in the top 75% of all 
scores were general in nature, whilst 41 % of responses from students in the bottom 25% 
were general. For the students whose survey scores lay in the middle 50%, only 31% of all 
their responses were general. The particular responses of all students were split into those 
responses which addressed only one item in the set and those which addressed most or all 
items. Students whose scores were in the lowest 25% were more likely to respond to one 
item only (67%) and offer only an answer or a description of the procedure: 

Just go 4 times 5b, write down 20b. 

 Students whose scores lay between the first and third quartiles were almost equally 
likely to provide responses to one item, or to several (55% and 45%). However in 
approximately one quarter of those cases, they offered some explanations. One student’s 
response to being shown Set 1 was:  
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…both the m’s are similar so you can add them. So go, 3m because the plus before the 2m belongs 
to it, so you go 3m plus 2m equals 5m and the 8 and 5, they’re both similar and the minus is in front 
of the 5 so it belongs to it, so it’s 3, so it would be 3m plus, no 5m plus 3. That’s how I do that 
question. Question 2. It’d be 5p minus p because they’re both similar terms, would be 4p, because p 
equals 1. 4p plus 1,that would be the answer I think.  Question 5...um a and b when you put them 
together they are similar with the other a and b. So the plus belongs to the ab because it is in front of 
it. So go 2a plus ab because ab equals 1. You get 3ab so you’d go 3ab and you go plus 3b because 
you can’t plus b with the ab because they are different. 

Of the students whose survey scores were in the top 75%, 56% responded to one item 
only and only 2 out of those 14 responses were explanatory, whereas 54% of the responses 
to many particular items were explanatory, such as in the preceding example and in the 
following response to Set 2. 

So, basically, multiplying 5b by 4 gives you 20b, because you are just putting 5 lots, 4 lots of 5b 
together. 2ab times a. Well with that you can only work with the a’s so it becomes 2 a2b. And 4r 
times 5t times 3, that can become… Well you can multiply the numerals so that gives 20 tr, times 
that by 3, that gives you 60 tr.  

Discussion  

When teachers listen to students explaining their mathematical thinking, it may not be 
just the student’s ability to use mathematical vocabulary or to cite a rule that influences a 
teacher’s judgement of that student’s understanding. There are also linguistic features that 
are typically used by students who are more, or less, successful. One such feature is the 
style of response, whether it be in general terms which express understanding without 
necessary reference to particular items, or in more specific terms when students refer to 
particular items. 

Two hypotheses were considered: (1) that more difficult items would attract a greater 
proportion of particular responses; and (2) that less successful students would be more 
likely to give simple responses to particular items than more successful students. In the first 
instance, comparison of the numbers of particular or general responses with the order of 
difficulty of the survey items indicated that the more difficult items were responded to in 
particular terms by more students and that more students responded to the easier items in 
general terms. This result was significant at or beyond p = 0.001 level. [χ2 = 43.8, with 5 
degrees of freedom.] 

Some of the trends may not be so clear because of the grouping of items in this analysis 
and the averaging of successful threshold values. For example, the third item in Set 4b was 
scored as either wholly correct or not correct. Many students did perform one of the 
simplification steps such as dividing by a or dividing by 2, but this did not qualify as being 
correct. Yet many of those students who were scored as being incorrect could still offer a 
description that indicated they could carry out the procedure, at least in part: 

… and question 16, I’d do the same.  a2 times 4, 4a2 and 2 by 5a would be 10a over 4a2, and … and 
then … the a from the top would cancel out on the bottom. The denominator would be 4a times a 
and then the a would cancel one of the a’s out and then it’d be 10 over 4 a … 

Set 5 contained some items that were much more difficult than others because they 
were equations where the pronumeral of interest occurred on both sides. Many of the 
weaker students did not attempt these questions. Others, who were more confident in their 
arithmetic, successfully answered these by using trial and error methods. This meant, 
however, that their thinking was difficult to describe in algebraic terms, although ‘I used 
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guess and check’ is a generalisation of sorts. However, when the number of general 
responses to groups of items with an average degree of difficulty less than zero was 
compared with the number of general responses to the groups of items with an average 
degree of difficulty greater than zero, it was clear that the easier sets of items elicited more 
general responses than the harder sets. 

When the responses of individual students to the sets of items were analysed, the 
results indicated that the more successful students were more likely to give general 
responses to questions such as ‘Tell me what goes on in your head when you have to deal 
with questions like these’ than students who were less successful. [χ2 = 10.1 with 3 degrees 
of freedom. Significant at p=0.02 level.] T he picture is not so clear for those students who 
were partly successful, that is, those whose scores were above the lowest 25% but below 
the top 75%. On this one criterion of response type, these students were more likely to give 
particular responses than those students in the bottom quartile. However, although students 
in the interquartile range were slightly more likely to give a response to one item only in a 
set, in 23% of cases that response involved some sort of explanation. Of those students 
who responded to most or all items in a set, 30% of the responses were explanatory. This 
indicated that students who are moderately successful can provide explanations for the 
algebraic processes they perform, although they may not yet be able to see the relationships 
between each item clearly, and hence may not be able to generalise. 

In all but a few cases, the explanations were those which provided some procedural 
reasons for the algebraic process described, such as: 

You have to put them so that the denominators are the same, so that you can complete it, so the first 
one would be 2a over 10… 

Even the best students offered little in the way of explanations which gave a conceptual 
justification for the algebraic procedure. One of the few such explanations was given, after 
a prompt, as the student responded to items in set 4a (S indicates the student’s response, I, 
the interviewer): 

S: You have to make the denominators, the bottom one, the two, with addition   you have to make 
the two bottom numbers the same… 
I: Why do the bottom numbers have to be the same? 
S: Um, so like the fractions are equivalent to each other. 
The least successful students often gave an answer to only one item in the set, with no 

accompanying attempt at an explanation and proceeded no further. Those who cited a rule, 
even one which was appropriate, seemed unable to use it in many instances. This student, 
whose survey scores were in the bottom quartile, responded to items in Set 3. 

S: …I think you need to do the one inside the bracket first and then do the ones outside 

This sounded like a reasonable generalisation, but I decided to explore a little further: 
I: Can you tell me more about that? 
S: um…It’s like, you have to find out what x equals?  
I: [Shakes head] 
S: Oh, it wouldn’t. I don’t know…I wouldn’t know. 
One conclusion that may be drawn from such responses is that less successful students 

resort to quoting some sort of rule, although they may not be able to use it. More successful 
students, although they might focus on particular items, are inclined to act with some logic 
that they are able to articulate.  

Each of the three schools involved in the study had graded mathematics classes, all of 
which participated in the survey. When matched against success on the survey items and 
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grade as determined by the school it was found that all students whose survey scores lay in 
the top 75% were in the top Year 9 class in their respective schools when they completed 
the survey. That is, they were the most experienced students and the most successful. Six 
of the eight students whose scores were in the in the bottom 25% had been placed in a low 
Year 8 class by their schools. These represented the least experienced and the least 
successful students. 

Linguistic features of students’ explanations may serve as indicators of their level of 
understanding. This paper describes data that indicate that successful students are more 
likely to give general responses than less successful students, and that more difficult 
mathematical ideas evoke fewer general responses than easier items. Further examination 
of the data is needed to build a more robust model that could comprise several other 
linguistic features such as the types of pronouns used, the tense of verbs and the modality 
of the responses.  
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